Search results for "Open system"
showing 10 items of 34 documents
Estimation of the Repeatedly-Projected Reduced Density Matrix under Decoherence
2007
Decoherence is believed to deteriorate the ability of a purification scheme that is based on the idea of driving a system to a pure state by repeatedly measuring another system in interaction with the former and hinder for a pure state to be extracted asymptotically. Nevertheless, we find a way out of this difficulty by deriving an analytic expression of the reduced density matrix for a two-qubit system immersed in a bath. It is shown that we can still extract a pure state if the environment brings about only dephasing effects. In addition, for a dissipative environment, there is a possibility of obtaining a dominant pure state when we perform a finite number of measurements.
Quantum fluctuations and correlations in equilibrium and nonequilibrium thermodynamics
2014
GHZ state generation of three Josephson qubits in the presence of bosonic baths
2013
We analyze an entangling protocol to generate tripartite Greenberger-Horne-Zeilinger states in a system consisting of three superconducting qubits with pairwise coupling. The dynamics of the open quantum system is investigated by taking into account the interaction of each qubit with an independent bosonic bath with an ohmic spectral structure. To this end a microscopic master equation is constructed and exactly solved. We find that the protocol here discussed is stable against decoherence and dissipation due to the presence of the external baths.
A grid representation for distributed virtual environments
2004
Fast Internet connections and the widespread use of high performance graphic cards are making Distributed Virtual Environments (DVE) very common nowadays. The architecture and behavior of these systems are very similar to new grid computing applications where concepts such as sharing and high scalability are extremely exploited. However, there are several key issues in these systems that should still be improved in order to design a scalable and cost-effective DVE system. One of these key issues is the partitioning problem. This problem consists of efficiently assigning clients (3-D avatars) to the arbiters (servers) in the system. As an alternative to the ad-hoc heuristic proposed in the l…
Experimental realization of high-fidelity teleportation via non-Markovian open quantum system
2020
Open quantum systems and study of decoherence are important for our fundamental understanding of quantum physical phenomena. For practical purposes, there exists a large number of quantum protocols exploiting quantum resources, e.g. entanglement, which allows to go beyond what is possible to achieve by classical means. We combine concepts from open quantum systems and quantum information science, and give a proof-of-principle experimental demonstration -- with teleportation -- that it is possible to implement efficiently a quantum protocol via non-Markovian open system. The results show that, at the time of implementation of the protocol, it is not necessary to have the quantum resource in …
Three-state Landau-Zener model in the presence of dissipation
2019
A population transfer based on adiabatic evolutions in a three-state system undergoing an avoided crossing is considered. The efficiency of the process is analyzed in connection with the relevant parameters, bringing to light an important role of the phases of the coupling constants. The role of dissipation is also taken into account, focusing on external decays that can be described by effective non-Hermitian Hamiltonians. Though the population transfer turns out to be quite sensitive to the decay processes, for very large decay rates the occurrence of a Zeno-phenomenon allows for restoring a very high efficiency.
Microscopic biasing of discrete-time quantum trajectories
2021
We develop a microscopic theory for biasing the quantum trajectories of an open quantum system, which renders rare trajectories typical. To this end we consider a discrete-time quantum dynamics, where the open system collides sequentially with qubit probes which are then measured. A theoretical framework is built in terms of thermodynamic functionals in order to characterize its quantum trajectories (each embodied by a sequence of measurement outcomes). We show that the desired biasing is achieved by suitably modifying the Kraus operators describing the discrete open dynamics. From a microscopical viewpoint and for short collision times, this corresponds to adding extra collisions which enf…
Simulating quantum Brownian motion with single trapped ions
2004
We study the open system dynamics of a harmonic oscillator coupled with an artificially engineered reservoir. We single out the reservoir and system variables governing the passage between Lindblad type and non-Lindblad type dynamics of the reduced system's oscillator. We demonstrate the existence of conditions under which virtual exchanges of energy between system and reservoir take place. We propose to use a single trapped ion coupled to engineered reservoirs in order to simulate quantum Brownian motion.
Population trapping due to cavity losses
2008
In population trapping the occupation of a decaying quantum level keeps a constant non-zero value. We show that an atom-cavity system interacting with an environment characterized by a non-flat spectrum, in the non-Markovian limit, exhibits such a behavior, effectively realizing the preservation of nonclassical states against dissipation. Our results allow to understand the role of cavity losses in hybrid solid state systems and pave the way to the proper description of leakage in the recently developed cavity quantum electrodynamic systems.
Generalized Geometric Quantum Speed Limits
2016
The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the non uniqueness of a bona fide measure of distinguishability defined on the quantum state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum spee…